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A B S T R A C T   

Herbivorous insects play important roles in agriculture as pests or as weed biological control agents. Predicting 
the timing of herbivore insect population development can thus be of paramount importance for agricultural 
planning and sustainable land management. Numerical simulation models driven by temperature are often used 
to predict insect pest population build-up in agriculture. Such simulation models intend to use station-derived 
temperatures to drive the development of the target insect, although this temperature may differ substantially 
from that experienced by the insect on the plant. To improve the estimations, it has been suggested to replace air 
temperature in the model by land surface temperature (LST) data. Here, we use a numerical simulation model of 
insect population dynamics driven by either air temperature (combined with atmospheric temperature sound-
ings) or land surface temperature derived from satellites to predict the population trends of the leaf beetle 
Ophraella communa, a potential biological control agent of Ambrosia artemisiifolia in Europe. For this, we con-
ducted an extensive field experiment that included caged O. communa populations at five sites along an altitu-
dinal gradient (125–1250 m a.s.l.) in Northern Italy during 2015 and 2016. We compared our model predictions 
using air or land surface temperature with observed beetle population build-up. Model predictions with both air 
and land surface temperatures predicted a similar phenology to observed populations but overestimated the 
abundance of the observed populations. When taking into consideration the error of the two measurement 
methods, the predictions of the model were in overlapping timeframes. Therefore, the current model driven by 
LST can be used as a proxy for herbivore impact, which is a novel tool for weed biocontrol.   

1. Introduction 

Insect herbivores are considered to be fundamental for ecosystem 
structure and functioning due to their impact on vegetation composition 
and productivity (Crawley 1983). The impact is particularly significant 
in the case of agricultural pests or when applied as biological control 
agents of weeds. Insect herbivores can cause vast crop losses in agri-
culture, and insects like the Colorado potato beetle (Leptinotarsa 
decemlineata Say), cotton bollworm (Helicoverpa armigera Hübner) or fall 
armyworm (Spodoptera frugiperda J.E. Smith) attract global awareness as 

serious crop pests (Liu et al., 2012; Kriticos et al., 2015; Kumar et al., 
2018). 

Classical biological control of invasive plant species refers to the 
deliberate release of specialist herbivore insects collected in the invasive 
plant’s native range in order to reduce its abundance and/or further 
spread into new geographic areas (Müller-Schärer and Schaffner 2008). 

These classical biological control agents are selected on being either 
monophagous, or attacking few closely related plant species. This re-
duces non-target impacts on local crops and vegetation (Müller-Schärer 
and Schaffner 2008). Currently, less than 1% of all intentional releases 
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of classical weed biological control agents are estimated to have a po-
tential to lead to negative effects at the population level of nontarget 
species (Hinz et al., 2019). Insects such as the saltcedar leaf beetle 
(Diorhabda elongata Brullé), the mottled water hyacinth weevil (Neo-
chetina eichhorniae Warner) or the cochineal Dactylopius opuntiae 
(Cockerell) are examples of successful biological control agents used to 
manage weeds (Schwarzländer et al., 2018; Hoffmann et al., 2020). 

The insect’s impact on plant performance usually increases with the 
density of insect herbivores (Myers and Sarfraz 2017). Therefore, being 
able to predict insect herbivore population dynamics can be critical for 
making sound management decisions (Harms et al., 2020). In agricul-
tural systems, pest predictive models are used to adjust timing for 
management decisions such as the timing of application of insecticides 
(Magarey et al., 2015; Johnson et al., 2016). Similarly, modeling the 
demography of biological control agents could be used to predict 
biocontrol impact and inform whether additional management is 
needed to control a target weed (Mvandaba et al., 2019; Augustinus 
et al., 2020a,b). Furthermore, predicting climate-dependent phenology 
of potential biological control agents could prevent release of organisms 
in a novel range if there is a phenological mismatch (Harms et al., 2020). 

Demographic models of insects are in general driven by temperature 
measurements for local predictions of population dynamics, or inter-
polated datasets of air temperature to make predictions for larger areas 
(Damos and Savopoulou-Soultani 2012). A challenge with air temper-
atures, however, is to obtain reliable high-quality spatially continuous 
data. Air temperatures are generally provided by local weather stations, 
which can be located at long distance from another, making interpolated 
estimations inaccurate. An alternative to the utilization of interpolated 
air temperature estimates for modeling ecological phenomena is the use 
of satellite information and products (Lensky and Dayan 2011; Blum 
et al., 2013; Lensky et al., 2018). Land surface temperatures (LST) 
derived from satellite measurements may be used to drive insect popu-
lation models, providing spatially continuous assessments of population 
dynamics ( Blum et al., 2015, 2018). These data are easily available 
globally and free of charge with high spatial resolution (Shiff et al., 
2021). In general, differences between surface (LST) and air (i.e., 
measured at 2 m above the surface) temperatures are related to vege-
tation cover and atmospheric circulation (Lensky et al., 2018). The 
difference between the two measures is usually larger at day time; LST 
daily mean temperature is expected to record higher temperatures than 
the observed air temperature. When local temperature differences can 
be estimated, they can be used to adapt the satellite-derived LST as in-
puts in the model, resulting in more accurate model predictions for in-
sect herbivore dynamics ( Blum et al., 2015; Suggitt et al., 2011). 

Recent agricultural and ecological studies used thermal infrared or 
microwave measures to determine LST to predict insect densities 
(Muharam et al., 2017), especially in areas where only a few or no 
weather stations exist (Da Silva et al. 2015). A numerical simulation of 
olive fly (Bactrocera oleae Gmelin) population dynamics driven by 
derived-LST tree canopy temperature (calculated from the retrieved 
Moderate Resolution Imaging Spectroradiometer [MODIS] LST data) 
showed a high degree of correlation with trapping data in several 
geographic locations of the Near East (Blum et al., 2015). The same 
model was also successfully applied to predict the population dynamics 
of the polyphagous cotton bollworm (Helicoverpa armigera) breeding in 
commercial corn and tomato plantations (Blum et al., 2018). This 
method has not been used in the context of weed biocontrol yet, where it 
can be a useful tool to make this management method more predictable. 

Here we applied the approach described above to model and forecast 
the population trends of a phytophagous biological control candidate of 
the invasive common ragweed Ambrosia artemisiifolia L. (Asteraceae) in 
Europe, the beetle Ophraella communa LeSage (Chrysomelidae). We 
contrasted air temperature and MODIS-derived LST as an input source to 
drive the beetle’s model. We did not correct the LST data for local 
variation (, Blum et al., 2015; Suggitt et al., 2011), because these cor-
rections are based on knowledge of local temperature variation between 

LST and air temperature, which can be prohibitively challenging to 
obtain for large-scale geographical predictions. Resulting forecasts were 
validated using data from a field experiment conducted in Italy during 
the summers of 2015 and 2016. The sites differed in terms of elevation 
and temperature conditions, providing an experimental diverse natural 
ground to evaluate the abilities of uncorrected LST-derived temperature 
vs. on-site collected temperature as drivers of the beetle’s population 
dynamics models. 

2. Material and methods 

2.1. Study species 

Ambrosia artemisiifolia is a North-American annual weed that has 
invaded ranges on all continents except Antarctica. In Europe, it is 
considered a noxious weed since the 1920s (Csontos et al., 2010). Be-
sides being a costly weed in spring-sown crops, A. artemisiifolia has 
attracted particular attention because of its highly allergenic pollen, 
resulting in high medical costs and decrease in human well-being in the 
sensitized population (Mouttet et al., 2018; Müller-Schärer et al., 2018, 
Schaffner et al. 2020). The leaf beetle O. communa, which is native to 
North America, was accidentally introduced in China in 2001 (Meng and 
Li 2005), where it is now used as a biological control agent of 
A. artemisiifolia (Zhou et al., 2017). In Europe, the leaf beetle was found 
for the first time in 2013 in Northern Italy and Southern Switzerland 
(Müller-Schärer et al., 2014) and it has expanded its range to the Balkan 
region (Augustinus et al., 2015; Lommen et al., 2017; Zadravec et al., 
2019; Horváth and Lukátsi 2020). While the use of O. communa as a 
biological control agent was initially ruled out because it can conclude 
its life cycle on sunflower, no non-target attacks have been reported in 
its native and imported range on sunflowers (Zhou et al., 2011) or native 
European plants (Augustinus et al., 2020c). Ophraella communa over-
winters at the adult stage, and can complete up to seven generations per 
season, depending on temperature (Zhou et al., 2010). In Europe, eggs 
are laid in batches as soon as the adults encounter seedlings of the 
annual host plant in spring. Egg deposition continues until mid-August 
(Augustinus et al., 2020a), with cessation of oviposition probably cued 
by a shorter photoperiod and decreasing temperature, as has been 
shown for O. communa populations in China (Zhu et al., 2012). All larval 
stages and adults feed on the green parts of the host plant. In Europe, the 
majority of leaf damage is observed in late August when O. communa 
abundance peaks (Augustinus et al., 2020a). 

Since the first observations of high population densities of 
O. communa in Northern Italy, aerial ragweed pollen concentrations 
have decreased by 80%, which cannot be explained by changes in 
climate or land use (Bonini et al., 2015a,b). While ecological suitability 
analyses combined with temperature and humidity-driven vital rates 
suggest that O. communa can reach population densities as observed in 
Northern Italy also in other parts of Europe (Augustinus et al., 2020b), 
no demographic model that may help predicting population densities of 
this beetle in a given year or region has been published so far. 

2.2. Field experiment 

In the summer of 2015 and 2016, we conducted field-cage experi-
ments to assess the temperature and relative humidity (RH)-dependent 
developmental rate of O. communa on A. artemisiifolia. The experiments 
were conducted at five sun-exposed sites in Northern Italy with similar 
inclines, 20–50 km from Milan, Lombardy (Fig. 1, Appendix A). In order 
to create a climatic gradient, we selected the sites along an altitudinal 
gradient from 125 to 1250 m a.s.l. (Magenta, “Mag”, at 125 m; Com-
munita Montana, “CM” at 250 m; Fogliaro, “Fog” at 550 m; Eremo, “Ere” 
at 770 m and Piani d’Erna “PdE2 at 1250 m). The experiments were 
conducted within 1 × 2 × 1 m (l x w x h) cages consisting of aluminum 
frames and a zipper-equipped gauze (Diatex SA, France). 

Ambrosia artemisiifolia plants were grown in 2014 and 2015 from 
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seeds collected in Busto Arsizio (Lombardy) in the previous season. All 
plants were grown in the greenhouse of Parco Monte Barro, Centro Flora 
Autoctona in Galbiate (359 m a.s.l.). Seedlings were transferred from 
seed trays to 9 cm square pots filled with standard garden soil and 
transferred to the soil within the field experimental cages when they had 
12–15 leaves. We planted 12 plants per cage. 

In early July 2015 and 2016, we released 20 freshly hatched 
O. communa adults (10♂, 10♀) per cage, two cages per site. The beetles 
were individually marked with nail polish dots on the elytra, (color 
coded for sex, and patterns for individuals). In each site, we set up two 
experimental cages (=replicates) that were monitored for two years. 
Once a week, we visited all the experimental cages and counted fertile 
eggs (excluding black, desiccated or hatched eggs), pupae and marked 
(initially released) and unmarked (offspring) adults. 

2.3. Temperature data 

We downloaded the 1 km land surface temperature (LST) product 
(MYD11A1) from NASA’s (MODIS) via Google earth engine (Gorelick 
et al., 2017). The LST product was downloaded for day and night 
(1:30AM/PM). When temperature data were missing due to cloud cover, 
we estimated the missing values by taking the average temperature of 
the past 18 years for the given Julian date (Lensky and Dayan 2011). LST 
was downloaded for all pixels where experimental cages were located, 
except for three sites. In the experimental site of Communita Montana 
(‘CM’) at 245 m a.s.l., which included a nearby water body, we used an 
adjacent pixel instead to prevent overestimations of LST at night and 
underestimation at day since water-bodies are known to alter LST 
measurements (Gunawardena et al., 2017). The sites ‘Fog’ (550 m a.s.l.) 
and ‘Ere’ (770 m a.s.l.) were on the lower and upper edge of the same 
pixel (Fig. 1C). Since these sites are likely to experience different tem-
peratures from each other, we downloaded the temperature measure-
ments of adjacent pixels with the same altitudes and inclines as the sites, 
and averaged the temperature values of the pixel with the experimental 
site with the temperatures of the adjacent pixels. Temperature mea-
surement error per day and site was taken from the product “LST error 
flag”. Daily average air temperature for all the different experimental 
sites was obtained from two weather stations which were <10 km away 

from the experimental sites (Arconate SMR and Galbiate DW6022). We 
used a temperature measurement error of ±0.4 ◦C. We then downloaded 
the atmospheric temperature sounding for the corresponding dates of 
1608 LIML weather station in Linate to adjust for temperature differ-
ences along the altitudinal gradient per day. In-cage local temperature 
measurements were also obtained with data-loggers (ELV TFD128) but 
were disregarded since they showed a high variability due to improper 
shielding from solar radiation. 

2.4. Numerical simulation model of insect pest population dynamics 

We used the stage-structured, continuous time-age population model 
driven by temperature described in Blum et al. (2018) to simulate the 
population dynamics of the leaf beetle O. communa. 

This insect population model is based on a population density 
function described by a series of differential equations: 

dNi(t)
dt

=
k

del
[Ni− 1(t) − Ni(t)] − μi(t)Ni(t) (1)  

where each life stage (i.e., egg, larva, pupa, pre-oviposition, and adults) 
is composed by k-age cohorts (i = 1,2,3,…,k) and calculated by a dif-
ferential equation in a sequential order. μi(t) in Eq. (1) is the cohort i 
attrition at time t, del is the average developmental time per life stage, 
and Ni(t) is the cohort i population density. Time and age are measured 
in degree days (DD = 0.5*(Tmax + Tmin) – Tcritical), which is calculated 
using the rectangular method (Arnold 1959). The equation is solved in 
the model numerically, using the Euler method. The population flux 
(ri(t)) from one age cohort to another is described as: 

ri(t) =
k ∗ Ni(t)

del
(2) 

Thus, eqn. (1) becomes: 

dri(t)
dt

=
k

del

{

ri− 1(t) −
[

1+ μi(t)⋅
del
k

]

⋅ri(t)
}

(3) 

In order to calculate the critical temperature (Tcritical) and the 
developmental time of each life stage (del), the model assumes a linear 
relationship between developmental rate and temperature, 

Fig. 1. A-C: Locations of weather stations (triangles) and experimental sites (circles). D: picture of an experimental site with experimental cages.  
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r(T) = bT + a (4)  

where b is the slope and a is the intercept of such relationship. Then, the 
critical temperature (Tcritical) and the stage developmental time (del) are 
calculated from eqs. (5) & 6 (Damos and Savopoulou-Sultani, 2012): 

Tcritical = −
b
a

(5)  

del =
1
b

(6) 

The observed variance (var) of the physiological time in day degrees 
(DD) derived from experimental settings is used to calculate the number 
of age cohorts (k) within each life stage (Vansickle, 1977): 

k =
del2

var
. (7) 

Mortality and egg production rates were calculated as a function of 
temperature following data from Zhou et al. (2010). Pre- and 

post-oviposition adult mortality rates were assumed to be independent 
of temperature. Tcritical, del, k, and μ used in the model are provided in 
Appendix 1. 

2.5. Analysis 

To compare and validate model output driven by the two different 
sources of temperatures (LST and MET) with the experimental data, we 
calculated the mean square of the prediction error (MSPE) per life stage, 
site and year: 

MSPE = Σ(p − o)2
(eqn. 8)where p is the number predicted by the 

model, and o is the number observed in the experiment at the same date. 
We then divided this value by the average of the MSPE for the LST and 
the MET model to obtain the relative mean square prediction error 
(RMSPE). 

Weather data were adapted for analysis in R, using the packages 
readxl (Wickham and Bryan 2016), reshape 2 (Wickham 2007) and plyr 
(Wickham and Wickham 2016) for data transformation and inference. 

Fig. 2. Predicted and observed phenology of O. communa F1 eggs, pupae and adults in the experimental sites along the altitudinal gradient during 2015 and 2016. 
Green, empty squares show earliest and latest first occurrence based on model predictions driven with land-surface temperatures (± measurement error), blue plusses 
show earliest and latest first occurrence based on meteorological station data (± measurement error), and red, filled squares show earliest and latest first occurrences 
observed in the field experiment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Graphical representation of data was conducted in ggplot2 (Wickham 
2009), ggmap (Kahle and Wickham 2013), and gridExtra (Auguie et al., 
2017). The insect population model was run in IDL (Interactive Data 
Language Harris Geospatial Solutions). 

3. Results 

The model simulations estimated shorter developmental time both 
using LST data and air temperatures derived from meteorological sta-
tions. When considering the errors of both temperature measurement 
methods, the developmental time ranges overlapped in all but one case, 
indicating that the developmental time estimates were similar (Fig. 2). 

Models driven with either air temperatures or LST produced a bi- 
modal pattern of egg numbers (Fig. 3). The second peak of forecasted 
egg population coincides with the emergence of the F1 adults produced 
by adults at the start of the experimental populations. Though noted in 
the observed data, the bi-modal pattern was much more pronounced in 
model predictions, with the second simulated egg-crest being higher 
than the first simulated crest (see e.g. model predictions for the four 
lowest sites in Fig. 2a). 

The model simulations estimated higher population abundances 
than observed in the experiments. The estimates using LST data pre-
dicted higher populations than the simulation using air temperatures 
derived from meteorological stations (Fig. 3). Predicted population in-
crease was much higher than observations across life stages, sites, and 
years, except for the predicted number of eggs at Piani d’Erna (‘PdE’) at 
1250 m a.s.l. in 2016 when using air temperature as a driver of the 
model (Fig. 3). 

Abundance increased earlier in the LST-driven model, particularly 
for the pupal stage, but also for other life stages (Fig. 3). As a result, the 
MSPE was almost always lower for the model driven by the air tem-
perature (Table 1). 

4. Discussion 

The model simulation was able to closely approximate the phenology 
of O. communa, both when driven with LST and air temperatures. 
However, the models generally overpredicted the number of beetles. 
Below we discuss these results from a technical, biological and practical 
perspective. 

4.1. Technical perspective 

Predictions of the model driven by LST resulted in a shorter devel-
opmental time and in higher population densities compared to the 
model driven by air temperature (i.e., from meteorological stations and 
interpolations). This is not surprising, since LST estimates are in general 
higher than the air temperature measurements, especially during the 
daytime (Trigo et al., 2008), and LST were not corrected for these de-
viations (see for example Blum et al., 2015). The higher LST therefore 
might have resulted in a faster accumulation of DD and a shorter 
developmental time of the beetles. The earlier the adults emerge and 
start laying eggs, the longer they can keep producing offspring before 
the photoperiod-induced cessation of egg deposition. For example, in 
The Eremo site (770 m), a second increase in the number of eggs is 
forecasted earlier in the model driven by LST, which results in a second 
increase in the pupae and adult populations (’second offspring genera-
tion’) in mid-August of 2015, which was not observed in the model 
driven by air temperatures. In this case, phenology is out of phase and 
more generations than actually observed can be predicted. A correction 
of the LST would probably improve the model fit to the validation data, 
but requires local knowledge for further upscaling on a larger 
geographic area. In earlier work on predicting biocontrol agent impact 
in its potential range, the focus of predicting density-dependent impact 
on the target plant was by using phenology as an indicator for herbivore 
population densities. For instance, Mouttet et al. (2018) and Schaffner 

et al. (2020) predicted that a decrease of ~80% of aerial pollen of 
A. artemisiifolia was depending of O. communa reaching at least 3 gen-
erations before the onset of flowering. Hence, similar impact in Europe 
was estimated to be as large only in locations where O. communa could 
conclude at least 3 generations per year. Both air temperature and 
LST-driven models overpredicted population densities, while phenology 
was described rather well. Therefore, LST-driven models could be used 
in the same way as models driven by data derived from meteorological 
stations and interpolations, as in Mouttet et al. (2018) and Schaffner 
et al. (2020). 

4.2. Biological perspective 

The model predictions at the coldest site, which is most likely at the 
edge of the climatic niche of O. communa, better approximated the 
observed trends of the beetle populations. The data used to parametrize 
the model (Appendix A) were obtained from studies conducted in con-
stant temperature laboratory experiments (Zhou et al., 2010, see Ap-
pendix 2). Our observations, on the other hand, were collected under 
ambient temperature conditions in an open field experiment. This might 
have affected the ability of the model to properly simulate beetle 
development and growth because of beetle behavior and general pat-
terns in developmental times of insect populations at lower temperature 
thresholds. 

Eigenbrode et al. (2015) showed that insects in field environments 
can use basking behavior to increase body temperature (and therefore 
metabolisms) compared to the air temperature. Since the data used to 
parametrize our model were collected in incubators, our model does not 
consider this mechanism. This implies that model predictions in a colder 
environment should be closer to observations from a 
varying-temperature environment, which is the case in the predictions 
of our model. 

The overpredictions of the model could also be explained by the 
general trends of insect population developments at the edge of their 
physiological range. When comparing developmental rates of 29 species 
of terrestrial insects, Paaijmans et al. (2013) found that temperature 
fluctuation around low mean temperatures increased fitness, while 
fluctuation around high mean temperatures decreased fitness compared 
to the use of parameters derived under constant high temperature con-
ditions. Temperature fluctuations around high temperatures result in 
the need of energy expenditure on production and breakdown of heat 
shock proteins, thus decreasing insect fitness (Chen et al., 2018, 2019 ). 
An additional factor affecting forecasting may have been related to the 
fact that we have not considered humidity-related parameters in the 
model. We did not consider mortality related to relative humidity in this 
model, which could have affected model predictions, over-predicting 
abundance. Since temperature and relative humidity are intercorre-
lated by nature, relative humidity at high temperatures will be lower if 
absolute humidity stays the same. Low relative humidity has been 
shown to have a negative effect on population growth of several insect 
species (Simelane, 2007; Lu and Wu 2011, Augustinus & Sun et al. 
2020), and it is expected that insects will encounter lower relative hu-
midity levels at the upper edge of their thermal range. 

4.3. Practical perspective 

The inclusion of density-dependent factors or humidity-driven 
mortality could help improve the model forecasting abilities. Howev-
er, estimating insect abundance for single species over a larger area in 
absolute numbers is a very challenging endeavor. For example, in pest 
monitoring, most integrated pest management procedures use pest traps 
to estimate optimal timing, but normally they use an experience-based 
threshold, and not a trap-based estimation of absolute abundance of 
pest insects (Adams et al., 2017). These kinds of datasets are not avail-
able for O. communa populations, partially because studies of overwinter 
survival, and therefore estimates for population densities, have focused 
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Fig. 3. Predicted vs. observed abundance numbers of O. communa in 2015 (left column) and 2016 (right column). Predictions of the model driven by LST (green) and 
air temperatures (in blue) with respective temperature error (ribbon). The red points show the validation data, the vertical lines show the variation within the 
validation data. All data are displayed on a logarithmic scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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on physiological or evolutionary changes (Zhou et al., 2013; Tanaka and 
Murata 2016) or host plant utilization (Watanabe and Hirai 2004), but 
have not given any estimates for overwinter survival. Furthermore, 
studies on impact of O. communa on individual A. artemisiifolia plants 
and populations which included measurements of O. communa abun-
dance did not show clear correlation between beetle abundance and 
level of damage to the plant in field experiments (Augustinus et al., 
2020a; Lommen et al., 2018; ). Without dependable methods to estimate 
O. communa density in the field, and without a clear measurement of per 
capita impact on A. artemisiifolia in a heterogeneous environment, we do 
not think including density-dependence or humidity-driven mortality 
would make the model any more accurate, while phenology has been 
identified as a predictor for impact (Mouttet et al., 2018; Augustinus 
et al., 2020b, Schaffner et al., 2020) 

Therefore, the presented model can still be used to compare potential 
O. communa population build-up in suitable ranges in Europe to its 
current range. In Northern Italy, where the beetle is present, the aerial 
pollen concentrations have decreased by ~80% (Bonini et al., 2015a,b). 
This strong decrease is explained by the timing of the 3rd generation of 
O. communa. The exponential increase of O. communa results in high 
impact on male flower maturation and pollen release (Augustinus et al., 
2020b; Mouttet et al., 2018; Schaffner et al., 2020). While O. communa 
phenology is highly influenced by temperature, A. artemisiifolia flow-
ering onset is influenced by photoperiod (Leiblein-Wild and Tackenberg 
2014). A model for the plant based on photoperiod, combined with this 
model to refine predictions on where in Europe O. communa will be able 
to conclude its 3rd generation before the plant starts flowering would be 
useful to predict impact, both in the long-term and in real-time. 
Therefore, this numerical simulation model can be used as a novel 
method to predict the impact of O. communa on A. artemisiifolia in 
Europe, both driven with LST and air temperature–driven models, and 
could also be used for different weed biocontrol agents. 
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Appendix 

We took the laboratory results of Zhou et al. (2010), and Eqs. (5)-7 to calculate the critical temperature (Tc), developmental time (del) in degree 
days, and the number of substages (k) for each stage of O. communa.   

Stage eggs larva Pupae pre-oviposition adults 

Tc [ ◦C] 11.10 14.79 6.35 13.04 0.53 
del [DD] 91.01 117.70 145.22 360.30 1264.39 
k 42.00 90 119 110 18  

Temperature ( ◦C) dependent oviposition (# of eggs): 
Lay(T) = − 0.1703T2 + 12.59T - 173.91 
Temperature ( ◦C) dependent mortality rate (μ) for each life stage: 
Egg: μ(T) = 0.0001273T2 - 0.0066658T + 0.088886 

Table 1 
The relative root mean squared error (r-RMSE), scaled to 0–1 of model calculations vs. observed populations for each site and year. A smaller r-RMSE means a better 
prediction of the model.   

2015 2016   
Mag CM Fog Ere PdE Mag CM Fog Ere PdE  

eggs 0.975 0.91 0.855 1 1 0.93 0.955 0.655 0.785 0.89 LST 
0.025 0.09 0.145 0 0 0.07 0.045 0.345 0.215 0.11 MET 

pupae 0.99 1 1 1 1 0.99 0.99 0.57 0.86 0.925 LST 
0.01 0 0 0 0 0.01 0.01 0.43 0.14 0.075 MET 

adults 0.990.01 1 0.99 1 1 0.705 0.78 0.715 0.99 0.575 LST 
0.01 0 0.01 0 0 0.295 0.22 0.33 0.01 0.425 MET  
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Larva: μ(T) = 0.00007821T2 - 0.00424T + 0.05966 
Pupae: μ(T) = 0.00001908T2 - 0.001047T + 0.014481 
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Horváth, D., Lukátsi, M., 2020. First record of Ophraella communa in Hungary 
(Coleoptera: chrysomelidae). Folia Entomol. Hungarica 81, 73–79. 

Johnson, C.A., Coutinho, R.M., Berlin, E., Dolphin, K.E., Heyer, J., Kim, B., Leung, A., 
Sabellon, J.L., Amarasekare, P., 2016. Effects of temperature and resource variation 
on insect population dynamics: the bordered plant bug as a case study. Funct. Ecol. 
30, 1122–1131. https://doi.org/10.1111/1365-2435.12583. 

Kahle, D., Wickham, H., 2013. ggmap: spatial visualization with ggplot2. R J. 5, 
144–161. https://doi.org/10.32614/RJ-2013-014. 

Kriticos, D.J., Ota, N., Hutchison, W.D., Beddow, J., Walsh, T., Tay, W.T., Borchert, D.M., 
Paula-Moreas, S.V., Czepak, C., Zalucki, M.P., 2015. The potential distribution of 
invading Helicoverpa armigera in North America: is it just a matter of time? PLoS 
ONE 10, e0119618. https://doi.org/10.1371/journal.pone.0119618. 

Kumar, L., Bisht, R., Singh, H., Kumar, A., Pandey, N., Kumar, M., 2018. Bioefficacy and 
economics of some newer insecticides and bio-pesticides against Helicoverpa 
Armigera (Hub.) on chickpea (Cicer Arietinum L.) crop. J. Pharmacogn. Phytochem. 
1, 1739–1744. 

Leiblein-Wild, M.C., Tackenberg, O., 2014. Phenotypic variation of 38 European 
Ambrosia artemisiifolia populations measured in a common garden experiment. Biol. 
Invasions 16 (9), 2003–2015. https://doi.org/10.1007/s10530-014-0644-y. 

Lensky, I.M., Dayan, U., 2011. Detection of finescale climatic features from satellites and 
implications for agricultural planning. Bulletin of the Am. Meteorological Soc. 92, 
1131–1136. https://doi.org/10.1175/2011BAMS3160.1. 

Lensky, I.M., Dayan, U., Helman, D., 2018. Synoptic circulation impact on the near 
surface temperature difference outweighs that of the seasonal signal in the Eastern 
Mediterranean. J. Geophysical Res.-Atmospheres 123, 11333–11347. https://doi. 
org/10.1029/2017JD027973. 

Liu, N., Li, Y., Zhang, R., 2012. Invasion of Colorado potato beetle, Leptinotarsa 
decemlineata, in China: dispersal, occurrence, and economic impact. Entomol. Exp. 
Appl. 143, 207–217. https://doi.org/10.1111/j.1570-7458.2012.01259.x. 

Lommen, S.T.E., Hallmann, C.A., Jongejans, E., Chauvel, B., Leitsch-Vitalos, M., 
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